Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2403296, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602707

RESUMO

Combining immune checkpoint blockade with chemotherapy through nanotechnology is promising in terms of safety and efficacy. However, the distinct subcellular distribution of each ingredient's action site makes it challenging to acquire an optimal synergism. Herein, a dual-pH responsive hybrid polymeric micelle system, HNP(αPDL16.9, Dox5.3), is constructed as a proof-of-concept for the spatial cooperativity in chemo-immunotherapy. HNP retains the inherent pH-transition of each polymer, with stepwise disassembly under discrete pH thresholds. Within weakly acidic extracellular tumor environment, αPDL1 is first released to block the checkpoint on cell membranes. The remaining intact Doxorubicin-loaded micelle NP(Dox)5.3 displays significant tropism toward tumor cells and releases Dox upon lysosomal pH for efficient tumor immunogenic cell death without immune toxicity. This sequential-released pattern boosts DC activation and primes CD8+ T cells, leading to enhanced therapeutic performance than single agent or an inverse-ordered combination in multiple murine tumor models. Using HNP, the indispensable role of conventional type 1 DC (cDC1) is identified in chemo-immunotherapy. A co-signature of cDC1 and CD8 correlates with cancer patient survival after neoadjuvant Pembrolizumab plus chemotherapy in clinic. This study highlights spatial cooperativity of chemo- and immuno-agents in immunoregulation and provides insights into the rational design of drug combination for future nanotherapeutics development.

2.
Int J Biol Macromol ; 265(Pt 2): 130824, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38492708

RESUMO

Polysaccharide-functionalized gold nanoparticles (Polysaccharide-Au NPs) with high stability were successfully prepared by a straightforward method. Notably, the Au (III) ion acts as a strong Lewis acid to facilitate glycosidic bond breaking. Subsequently, the polysaccharide conformation was transformed to an open-chain form, exposing highly reduced aldehyde or ketone groups that reduce Au (III) to Au (0) crystal species, further growing into Au NPs. As-prepared Au NPs displayed excellent stability over a longer storage period (more than 70 days), a wide range of temperatures (25-60 °C), and pH range (3-11), varying concentrations (0-200 mM) and types of salt ions (Na+, K+, Ca2+, Mg2+), and glutathione solutions (5 mM). More interestingly, polysaccharide-Au NPs retained the antioxidant activity of polysaccharides and reduced oxidative damage at the cellular level through decreased reactive oxygen species (ROS) production. The intracellular levels of ROS pretreated with polysaccharide and polysaccharide-Au NPs were decreased 53.12-75.85 % compared to the H2O2 group, respectively. Therefore, the green synthesized Au NPs from natural active polysaccharides exhibit potential applications in biomedical fields.


Assuntos
Antioxidantes , Nanopartículas Metálicas , Antioxidantes/farmacologia , Espécies Reativas de Oxigênio , Peróxido de Hidrogênio , Ouro/química , Nanopartículas Metálicas/química , Polissacarídeos/farmacologia
3.
Sci Immunol ; 9(92): eadj3945, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38363830

RESUMO

Stimulator of interferon genes (STING) is an immune adaptor protein that senses cyclic GMP-AMP in response to self or microbial cytosolic DNA as a danger signal. STING is ubiquitously expressed in diverse cell populations, including cancer cells, with distinct cellular functions, such as activation of type I interferons, autophagy induction, or triggering apoptosis. It is not well understood whether and which subsets of immune cells, stromal cells, or cancer cells are particularly important for STING-mediated antitumor immunity. Here, using a polymeric STING-activating nanoparticle (PolySTING) with a shock-and-lock dual activation mechanism, we show that conventional type 1 dendritic cells (cDC1s) are essential for STING-mediated rejection of multiple established and metastatic murine tumors. STING status in the host but not in the cancer cells (Tmem173-/-) is important for antitumor efficacy. Specific depletion of cDC1 (Batf3-/-) or STING deficiency in cDC1 (XCR1creSTINGfl/fl) abolished PolySTING efficacy, whereas depletion of other myeloid cells had little effect. Adoptive transfer of wild-type cDC1 in Batf3-/- mice restored antitumor efficacy, whereas transfer of cDC1 with STING or IRF3 deficiency failed to rescue. PolySTING induced a specific chemokine signature in wild-type but not Batf3-/- mice. Multiplexed immunohistochemistry analysis of STING-activating cDC1s in resected tumors correlates with patient survival. Furthermore, STING-cDC1 signature was increased after neoadjuvant pembrolizumab therapy in patients with non-small cell lung cancer. Therefore, we have defined that a subset of myeloid cells is essential for STING-mediated antitumor immunity with associated biomarkers for prognosis.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Interferon Tipo I , Neoplasias Pulmonares , Animais , Humanos , Camundongos , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/terapia , Células Dendríticas , DNA/metabolismo , Interferon Tipo I/metabolismo , Nanopartículas/uso terapêutico , Imunoterapia/métodos
4.
Commun Biol ; 7(1): 161, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38332111

RESUMO

Auxins and their analogs are widely used to promote root growth, flower and fruit development, and yield in crops. The action characteristics and application scope of various auxins are different. To overcome the limitations of existing auxins, expand the scope of applications, and reduce side effects, it is necessary to screen new auxin analogs. Here, we identified 3,4-dichlorophenylacetic acid (Dcaa) as having auxin-like activity and acting through the auxin signaling pathway in plants. At the physiological level, Dcaa promotes the elongation of oat coleoptile segments, the generation of adventitious roots, and the growth of crop roots. At the molecular level, Dcaa induces the expression of auxin-responsive genes and acts through auxin receptors. Molecular docking results showed that Dcaa can bind to auxin receptors, among which TIR1 has the highest binding activity. Application of Dcaa at the root tip of the DR5:GUS auxin-responsive reporter induces GUS expression in the root hair zone, which requires the PIN2 auxin efflux carrier. Dcaa also inhibits the endocytosis of PIN proteins like other auxins. These results provide a basis for the application of Dcaa in agricultural practices.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ácidos Indolacéticos/farmacologia , Ácidos Indolacéticos/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Simulação de Acoplamento Molecular , Raízes de Plantas/metabolismo
5.
Environ Res ; 246: 118149, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38199466

RESUMO

Contaminated farmland leads to serious problems for human health through biomagnification in the soil-crop-human chain. In this paper, we have established a new soil remediation strategy using periphyton for the production of safer rice. Four representative polycyclic aromatic hydrocarbons (PAHs), including phenanthrene (Phe), pyrene (Pyr), benzo[b]fluoranthene (BbF), and benzo[a]pyrene (BaP), were chosen to generate artificially contaminated soil. Pot experiments demonstrated that in comparison with rice cultivation in polluted soil with ΣPAHs (50 mg kg-1) but without periphyton, adding periphyton decreased ΣPAHs contents in both rice roots and shoots by 98.98% and 99.76%, respectively, and soil ΣPAHs removal reached 94.19%. Subsequently, risk assessment of ΣPAHs based on toxic equivalent concentration (TEQ), pollution load index (PLI), hazard index (HI), toxic unit for PAHs mixture (TUm), and incremental lifetime cancer risk (ILCR) indicated that periphyton lowered the ecological and carcinogenicity risks of PAHs. Besides, the role of periphyton in enhancing the rice productivity was revealed. The results indicated that periphyton alleviated the oxidative stress of PAHs on rice by reducing malondialdehyde (MDA) content and increasing total antioxidant capacity (T-AOC). Periphyton reduced the toxic stress of PAHs on the soil by promoting soil carbon cycling and metabolic activities as well. Periphyton also improved the soil's physicochemical properties, such as the percentage of soil aggregate, the contents of humic substances (HSs) and nutrients, which increased rice biomass. These findings confirmed that periphyton could improve rice productivity by enhancing soil quality and health. This study provides a new eco-friendly strategy for soil remediation and simultaneously enables the production of safe crops on contaminated land.


Assuntos
Neoplasias , Perifíton , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Humanos , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Solo/química , Substâncias Húmicas , Poluentes do Solo/análise
6.
bioRxiv ; 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38260493

RESUMO

Stimulator of interferon genes (STING) is an immune adaptor protein that senses cyclic GMP-AMP (cGAMP) in response to self or microbial cytosolic DNA as a danger signal. STING is ubiquitously expressed in diverse cell populations including cancer cells with distinct cellular functions such as activation of type I interferons, autophagy induction, or triggering apoptosis. It is not well understood whether and which subsets of immune cells, stromal cells, or cancer cells are particularly important for STING-mediated antitumor immunity. Here using a polymeric STING-activating nanoparticle (PolySTING) with a "shock-and-lock" dual activation mechanism, we show type 1 conventional dendritic cell (cDC1) is essential for STING-mediated rejection of multiple established and metastatic murine tumors. STING status in the host but not in the cancer cells ( Tmem173 -/- ) is important for antitumor efficacy. Specific depletion of cDC1 ( Batf3 -/- ) or STING deficiency in cDC1 ( XCR1 cre STING fl/fl ) abolished PolySTING efficacy, whereas depletion of other myeloid cells had little effect. Adoptive transfer of wildtype cDC1 in Batf3 -/- mice restored antitumor efficacy while transfer of cDC1 with STING or IRF3 deficiency failed to rescue. PolySTING induced a specific chemokine signature in wildtype but not Batf3 -/- mice. Multiplexed immunohistochemistry analysis of STING-activating cDC1s in resected tumors correlates with patient survival while also showing increased expressions after neoadjuvant pembrolizumab therapy in non-small cell lung cancer patients. Therefore, we have defined that a subset of myeloid cells is essential for STING-mediated antitumor immunity with associated biomarkers for prognosis. One Sentence Summary: A "shock-and-lock" nanoparticle agonist induces direct STING signaling in type 1 conventional dendritic cells to drive antitumor immunity with defined biomarkers.

7.
Front Plant Sci ; 14: 1225028, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37877079

RESUMO

A two-year field trial was conducted to investigate the effects of partial substitution of chemical fertilizer (CF) by Trichoderma biofertilizer (TF) on nitrogen (N) use efficiency and associated mechanisms in wolfberry (Lycium chinense) in coastal saline land. As with plant biomass and fruit yield, apparent N use efficiency and plant N accumulation were also higher with TF plus 75% CF than 100% CF, indicating that TF substitution promoted plant growth and N uptake. As a reason, TF substitution stabilized soil N supply by mitigating steep deceases in soil NH4 +-N and NO3 -N concentrations in the second half of growing seasons. TF substitution also increased carbon (C) fixation according to higher photosynthetic rate (Pn) and stable 13C abundance with TF plus 75% CF than 100% CF. Importantly, leaf N accumulation significantly and positively related with Pn, biomass, and fruit yield, and structural equation modeling also confirmed the importance of the causal relation of N accumulation coupled with C fixation for biomass and yield formation. Consequently, physiological and agronomical N use efficiencies were significantly higher with TF plus 75% CF than 100% CF. Overall, partial substitution of CF by TF improved N use efficiency in wolfberry in coastal saline land by stabilizing soil N supply and coupling N accumulation with C fixation.

8.
Planta ; 258(3): 68, 2023 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-37598130

RESUMO

MAIN CONCLUSION: We found that auxin synthesis gene TAA1 and auxin polar transport genes AUX1 and PIN3 collectively maintain fertility and seed size in Arabidopsis. Auxin plays a vital role in plant gametophyte development and embryogenesis. The auxin synthesis gene TAA1 and the auxin polar transport genes AUX1 and PIN3 are expressed during Arabidopsis gametophyte and seed development. However, aux1, pin3, and taa1 single mutants only exhibit mild reproductive defects. We, therefore, generated aux1-T pin3 taa1-k2 and aux1-T pin3-2 taa1-k1 triple mutants by crossing or CRISPR/Cas9 technique. These triple mutants displayed severe reproductive defects with approximately 70% and 77%, respectively, of the siliques failing to elongate after anthesis. Reciprocal crosses and microscopy analyses showed that the development of pollen and ovules in the aux1 pin3 taa1 mutants was normal, whereas the filaments were remarkably short, which might be the cause of the silique sterility. Further analyses indicated that the development and morphology of aux1 pin3 taa1 seeds were normal, but their size was smaller compared with that of the wild type. These results indicate that AUX1, PIN3, and TAA1 act in concert to maintain fertility and seed size in Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Transporte Biológico , Fertilidade/genética , Ácidos Indolacéticos , Reprodução
9.
Ann Hepatol ; 28(6): 101135, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37451514

RESUMO

INTRODUCTION AND OBJECTIVES: Congestive hepatopathy (CH) is a hepatic vascular disease that results in chronic liver congestion, which can lead to liver fibrosis. New uses of metformin have been discovered over the years. However, the function of metformin in congestive liver fibrosis is not yet fully understood. This study aimed to investigate the effect of metformin on liver fibrosis in a mouse model of CH. MATERIALS AND METHODS: Partial ligation of the inferior vena cava (pIVCL) was used to establish a mouse model of liver congestion. Metformin (0.1%) was added to the daily drinking water of the animals, and the effect of metformin on liver tissue was studied after 6 weeks. Hepatic stellate cells (HSCs) were also stimulated with CoCl2 to investigate the inhibitory impact of metformin on the mammalian target of rapamycin (mTOR)/hypoxia-inducible factor-1α (HIF-1α) pathway. RESULTS: Metformin attenuated liver congestion; decreased the expression of collagen, fibronectin, α-smooth muscle actin (α-SMA), and HIF-1α; and ameliorated liver fibrosis in pIVCL mice. The proliferation and migration of HSCs were inhibited by metformin in vitro, which prevented α-SMA expression and restrained HSC activation. The expression levels of phosphorylated-mTOR, HIF-1α, and vascular endothelial growth factor were also decreased. CONCLUSIONS: Metformin inhibits CH-induced liver fibrosis. Functionally, this beneficial effect may be the result of inhibition of HSC activation and of the mTOR/HIF-1α signaling pathway.

11.
ACS Nano ; 17(11): 10872-10887, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37192052

RESUMO

Although cytotoxic treatments hold tremendous potential in boosting antitumor immunity, efferocytosis of tumor-associated macrophages (TAMs) could negatively remove apoptotic tumor cells through LC3-associated phagocytosis (LAP), resulting in inefficient tumor antigen presentation and immunosuppressive tumor microenvironment. To address this issue, we developed TAM-targeting nanospores (PC-CW) inspired by the predominant tropism of Rhizopus oryzae toward macrophages. To construct PC-CW, we disguised poly(sodium-p-styrenesulfonate) (PSS)-coated polyethylenimine (PEI)-shRNA nanocomplexes with the cell wall of R. oryzae conidia. LAP blockade by PC-CW delayed the degradation of engulfed tumor debris within TAMs, which not only enhanced antigen presentation but also initiated the domino effect of the antitumor immune response through STING signaling and TAM repolarization. Benefiting from this, PC-CW successfully sensitized the immune microenvironment and amplified CD8+ T cell responses following chemo-photothermal therapy, leading to substantial tumor growth control and metastasis prevention in tumor-bearing mouse models. The bioengineered nanospores represent a simple and versatile immunomodulatory strategy targeting TAMs for robust antitumor immunotherapy.


Assuntos
Neoplasias , Macrófagos Associados a Tumor , Camundongos , Animais , Fagocitose , Macrófagos/metabolismo , Neoplasias/terapia , Imunoterapia/métodos , Microambiente Tumoral
12.
Artigo em Inglês | MEDLINE | ID: mdl-36973112

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is a serious complication of hepatic vena cava Budd-Chiari syndrome (HVC-BCS) that significantly reduces the survival time of patients. Our study aimed to analyze the prognostic factors influencing the survival of HVC-BCS patients with HCC and to develop a prognostic scoring system. METHODS: The clinical and follow-up data of 64 HVC-BCS patients with HCC who received invasive treatment at the First Affiliated Hospital of Zhengzhou University between January 2015 and December 2019 were retrospectively analyzed. Kaplan-Meier curves and log-rank tests were used to analyze the survival curve of patients and the difference in prognoses between the groups. Univariate and multivariate Cox regression analyses were performed to analyze the influence of biochemical, tumor, and etiological characteristics on the total survival time of patients, and a new prognostic scoring system was developed according to the regression coefficients of the independent predictors in the statistical model. The prediction efficiency was evaluated using the time-dependent receiver operating characteristics curve and concordance index. RESULTS: Multivariate analysis showed that serum albumin level < 34 g/L [hazard ratio (HR) = 4.207, 95% confidence interval (CI): 1.816-8.932, P = 0.001], maximum tumor diameter > 7 cm (HR = 3.612, 95% CI: 1.646-7.928, P = 0.001), and inferior vena cava stenosis (HR = 8.623, 95% CI: 3.771-19.715, P < 0.001) were independent predictors of survival. A prognostic scoring system was developed according to the above-mentioned independent predictors, and patients were classified into grades A, B, C and D. Significant differences in survival were found among the four groups. CONCLUSIONS: This study successfully developed a prognostic scoring system for HVC-BCS patients with HCC, which is helpful for clinical evaluation of patient prognosis.

13.
Nat Commun ; 13(1): 4981, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36068198

RESUMO

Lactate is a key metabolite produced from glycolytic metabolism of glucose molecules, yet it also serves as a primary carbon fuel source for many cell types. In the tumor-immune microenvironment, effect of lactate on cancer and immune cells can be highly complex and hard to decipher, which is further confounded by acidic protons, a co-product of glycolysis. Here we show that lactate is able to increase stemness of CD8+ T cells and augments anti-tumor immunity. Subcutaneous administration of sodium lactate but not glucose to mice bearing transplanted MC38 tumors results in CD8+ T cell-dependent tumor growth inhibition. Single cell transcriptomics analysis reveals increased proportion of stem-like TCF-1-expressing CD8+ T cells among intra-tumoral CD3+ cells, a phenotype validated by in vitro lactate treatment of T cells. Mechanistically, lactate inhibits histone deacetylase activity, which results in increased acetylation at H3K27 of the Tcf7 super enhancer locus, leading to increased Tcf7 gene expression. CD8+ T cells in vitro pre-treated with lactate efficiently inhibit tumor growth upon adoptive transfer to tumor-bearing mice. Our results provide evidence for an intrinsic role of lactate in anti-tumor immunity independent of the pH-dependent effect of lactic acid, and might advance cancer immune therapy.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Animais , Linhagem Celular Tumoral , Glicólise , Ácido Láctico/metabolismo , Camundongos , Neoplasias/patologia , Microambiente Tumoral
14.
Biochem Biophys Res Commun ; 625: 109-115, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35952607

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is one of the most commonly diagnosed malignant tumors in the world. In recent years, more and more inhibitors against gene targets have been found to be beneficial to survival. However, the function of homo-sapiens histone H3 associated protein kinase (GSG2) in HCC has not been completely understood. METHODS: The expression of GSG2 in HCC tissues was detected by immunohistochemical staining. The lentivirus-mediated short hairpin RNA (shRNA) was used to knockdown GSG2 expression in HCC cell lines Hep3B2.1-7 and SK-HEP-1. Cell proliferation and colony formation were detected by MTT assay and colony formation assay, respectively, and flow cytometry assay was used to investigate the cell apoptosis in vitro. Mice xenograft model was constructed to detect the functions of GSG2 on tumor growth in vivo. Human Apoptosis Antibody Array was conducted to find the possible mechanism. RESULTS: GSG2 was overexpressed in HCC tissues compared with adjacent normal tissues. The knockdown of GSG2 had the functions of inhibiting the progression of HCC, including inhibiting cell proliferation and colony formation and promoting cell apoptosis. Compared with shCtrl group, the shGSG2 group expressed higher apoptotic genes such as caspase 3, caspase 8, Fas and FasL, while lower IGF1, Bcl2 and Bcl-w. CONCLUSIONS: Our study showed that knockdown of GSG2 suppresses the tumor growth in vitro and vivo. Therefore, GSG2 might play an oncogenic role in HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Apoptose/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/patologia , Camundongos , RNA Interferente Pequeno/genética
15.
Oxid Med Cell Longev ; 2022: 9306614, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35915613

RESUMO

As a previously discovered target of DNA damage, Na+/H+ exchanger 1 (NHE1) plays a role in regulation of intracellular pH (pHi) through the extrusion of intracellular proton (H+) in exchange for extracellular sodium (Na+). Its abnormal expression and dysfunction have been reported in solid tumor and hematopoietic malignancies. Here, we reported that suppression of NHE1 in BCR-ABL+ hematopoietic malignancies' K562 cells treated with Etoposide was manipulated by miR-19 and c-MYC. Inhibition of miR-19 or c-MYC enhanced the expression of NHE1 and sensitized K562 cells to Etoposide in vitro. The in vivo nude mouse transplantation model was also performed to confirm the enhanced sensitivity of K562 cells to Etoposide by inhibiting the miR-19 or c-MYC pathway. TCGA analysis conferred a negative correlation between miR-19 level and leukemia patients' survival. Thus, our results provided a potential management by which the c-MYC-miRNA 19 pathway might have a crucial impact on sensitizing K562 cells to Etoposide in the therapeutic approaches.


Assuntos
Neoplasias Hematológicas , Leucemia Mielogênica Crônica BCR-ABL Positiva , MicroRNAs , Trocador 1 de Sódio-Hidrogênio/metabolismo , Animais , Etoposídeo/farmacologia , Etoposídeo/uso terapêutico , Regulação Leucêmica da Expressão Gênica , Humanos , Células K562 , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Camundongos , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Regulação para Cima
16.
J Hazard Mater ; 427: 128166, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-34996000

RESUMO

The electrochemical degradation performance of sulfamethoxazole (SMX) was studied in the presence of humic acid (HA) by using a Ti/Ti4O7/ß-PbO2 anode. The electrochemical degradation efficiency of SMX decreased from 93.4% to 45.8% in 50 min after the addition of 25 mg L-1 HA. The pseudo-first-order kinetic rate constant decreased by 71.4%, and the EEO value increased from 63.8 Wh L-1 to 90.9 Wh L-1. HA and its degradation intermediates could compete for free radicals, especially for ·OH, with SMX. The analytical results obtained using UPLC-ESI-Q-TOF-MS showed that 18 degradation intermediates were identified in the coexistence of SMX and HA. Four imine intermediates were formed through the reactions between the aniline moieties of SMX and quinone groups in the HA structure through covalent bonds. Furthermore, the relative abundances of the intermediates demonstrated that the imine intermediates were complex and stable during electrochemical degradation.


Assuntos
Sulfametoxazol , Poluentes Químicos da Água , Substâncias Húmicas , Iminas , Cinética , Oxirredução , Poluentes Químicos da Água/análise
17.
Front Immunol ; 13: 1076045, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36591279

RESUMO

Background: Ferroptosis is one of the main mechanisms of sorafenib against hepatocellular carcinoma (HCC). Epithelial-mesenchymal transition (EMT) plays an important role in the heterogeneity, tumor metastasis, immunosuppressive microenvironment, and drug resistance of HCC. However, there are few studies looking into the relationship between ferroptosis and EMT and how they may affect the prognosis of HCC collectively. Methods: We downloaded gene expression and clinical data of HCC patients from the Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) databases for prognostic model construction and validation respectively. The Least absolute shrinkage and selection operator (LASSO) Cox regression was used for model construction. The predictive ability of the model was assessed by Kaplan-Meier survival analysis and receiver operating characteristic (ROC) curve. We performed the expression profiles analysis to evaluate the ferroptosis and EMT state. CIBERSORT and single-sample Gene Set Enrichment Analysis (ssGSEA) methods were used for immune infiltration analysis. Results: A total of thirteen crucial genes were identified for ferroptosis-related and EMT-related prognostic model (FEPM) stratifying patients into two risk groups. The high-FEPM group had shorter overall survivals than the low-FEPM group (p<0.0001 in the TCGA cohort and p<0.05 in the ICGC cohort). The FEPM score was proved to be an independent prognostic risk factor (HR>1, p<0.01). Furthermore, the expression profiles analysis suggested that the high-FEPM group appeared to have a more suppressive ferroptosis status and a more active EMT status than the low- FEPM group. Immune infiltration analysis showed that the myeloid-derived suppressor cells (MDSCs), and regulatory T cells (Tregs) were highly enriched in the high-FEPM group. Finally, a nomogram enrolling FEPM score and TNM stage was constructed showing outstanding predictive capacity for the prognosis of patients in the two cohorts. Conclusion: In conclusion, we developed a ferroptosis-related and EMT-related prognostic model, which could help predict overall survival for HCC patients. It might provide a new idea for predicting the response to targeted therapies and immunotherapies in HCC patients.


Assuntos
Carcinoma Hepatocelular , Ferroptose , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Prognóstico , Transição Epitelial-Mesenquimal/genética , Ferroptose/genética , Neoplasias Hepáticas/genética , Microambiente Tumoral/genética
18.
Semin Immunol ; 56: 101580, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34920941

RESUMO

Polyvalent interactions mediate the formation of higher-order macromolecular assemblies to improve the sensitivity, specificity, and temporal response of biological signals. In host defense, innate immune pathways recognize danger signals to alert host of insult or foreign invasion, while limiting aberrant activation from auto-immunity and cellular senescence. Of recent attention are the unique higher-order assemblies in the cGAS-STING pathway. Natural stimulation of cGAS enzymes by dsDNA induces phase separation and enzymatic activation for switchlike production of cGAMP. Subsequent binding of cGAMP to STING induces oligomerization of STING molecules, offering a scaffold for kinase assembly and signaling transduction. Additionally, the discovery of PC7A, a synthetic polymer which activates STING through a non-canonical biomolecular condensation, illustrates the engineering design of agonists by polyvalency principles. Herein, we discuss a mechanistic and functional comparison of natural and synthetic agonists to advance our understanding in STING signaling and highlight the principles of polyvalency in innate immune activation. The combination of exogenous cGAMP along with synthetic PC7A stimulation of STING offers a synergistic strategy in spatiotemporal orchestration of the immune milieu for a safe and effective immunotherapy against cancer.


Assuntos
Imunidade Inata , Proteínas de Membrana , Humanos , Imunoterapia , Proteínas de Membrana/agonistas , Proteínas de Membrana/metabolismo , Nucleotidiltransferases/metabolismo , Transdução de Sinais
20.
Nat Biomed Eng ; 5(5): 455-466, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33558734

RESUMO

The stimulator of interferon genes (STING) is an endoplasmic reticulum transmembrane protein that is a target of therapeutics for infectious diseases and cancer. However, early-phase clinical trials of small-molecule STING agonists have shown limited antitumour efficacy and dose-limiting toxicity. Here, we show that a polyvalent STING agonist-a pH-sensitive polymer bearing a seven-membered ring with a tertiary amine (PC7A)-activates innate-immunity pathways through the polymer-induced formation of STING-PC7A condensates. In contrast to the natural STING ligand 2',3'-cyclic-GMP-AMP (cGAMP), PC7A stimulates the prolonged production of pro-inflammatory cytokines by binding to a non-competitive STING surface site that is distinct from the cGAMP binding pocket. PC7A induces antitumour responses that are dependent on STING expression and CD8+ T-cell activity, and the combination of PC7A and cGAMP led to synergistic therapeutic outcomes (including the activation of cGAMP-resistant STING variants) in mice bearing subcutaneous tumours and in resected human tumours and lymph nodes. The activation of the STING pathway through polymer-induced STING condensation may offer new therapeutic opportunities.


Assuntos
Imunidade Inata , Proteínas de Membrana/agonistas , Neoplasias/terapia , Nucleotídeos Cíclicos/administração & dosagem , Polímeros/administração & dosagem , Animais , Linfócitos T CD8-Positivos/metabolismo , Feminino , Células HEK293 , Células HeLa , Humanos , Linfonodos/efeitos dos fármacos , Linfonodos/imunologia , Camundongos , Neoplasias/imunologia , Nucleotídeos Cíclicos/farmacologia , Polímeros/farmacologia , Células THP-1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...